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ABSTRACT 

 

 In this paper, a theory for systems in contact with a thermal reservoir is developed.  We 

call such systems “thermostated systems.” Interest in these systems has been vigorous for about 

the last 20 years and is illustrated by the Crooks theorem and the Jarzinski equality, two results 

for the description of systems in full phase space where all coordinates and momenta may be 

followed through time. These fundamental results follow from the behavior of Markovian 

systems in phase space for which path integral expressions can be derived from the 

Smoluchowski equation valid for Markovian systems. In the Introduction a brief account of this 

approach is given in which it is stressed that some of the motivation for the approach comes from 

computer simulations in which at an instant in time all momenta can be reversed in order to 

study the reversed trajectories. The impossibility of doing this reversal experimentally is 

discussed and a brief review of the origin of irreversibility in dynamical systems is given. 

Ultimately this leads to an alternative approach that involves “contraction of the description” and 

the derivation of a coordinate only picture that is intrinsically non-Markovian. In section I we 

explain how and why we begin our analysis with the Liouville-Langevin equation. The 

significance of the abundance of water in biological cells is presented and explains the 

appropriateness of the Liouville-Langevin equation. In section II the projection operator 

approach of Zwanzig and Mori, although in an essentially modified form, is developed. This 

shows why the results ultimately obtained are non-Markovian. In section III boson operator 

representations for the projection operator approach are derived. This makes the interpretation of 

the equations easier to grasp and facilitates the analysis. In section IV the intrinsic non-

commutativity of the boson operators leads to time ordered exponentials in the general final 

result, equation (43), the central result of the paper. Section V contains an elementary check of 

equation (43) for the case of no potential energy term in the Liouville equation. In section VI 

what it means for the result to be non-Markovian is explained. Especially pertinent is the failure 

of the Smoluchowski equation in the non-Markovian case. Thus the path integral methods used 

in full phase space are not applicable in the contracted description case. Section VIIa contains an 

advanced check of equation (43) for the damped harmonic oscillator. The time evolution of the 

averaged coordinate is given. In section VIIb analysis of the memory kernel in equation (43) for 

the harmonic oscillator is presented in a quite long sequence of steps. The time evolution of the 



averaged square of the coordinate is derived. In section VIII the results for the harmonic 

oscillator are combined to form the conditional probability distribution for this non-Markovian, 

Gaussian example. In section IX non-equilibrium thermodynamics results are discussed. The 

demarcation between generalized non-equilibrium thermodynamic results governed by the 

Helmholtz free energy and non-thermodynamic results that feature the non-Markovian character 

of our general framework is elucidated. Underdamping is the key. Finally, in section X we 

address the incidence of underdamping in sub-cellular biology. 

 

Introduction 

 

 For the past twenty or so years, there has been a renewed interest in 

thermostated systems (e. g. [1] Evans et al., [2] Gallavotti and Cohen, [3] Crooks, 

[4] Jarzynski, [5] Gore et al., [6] Hoover and Hoover, [7] England). Some of this 

interest arose from the ability to do detailed molecular dynamics calculations in 

which it is possible to specify and reverse all momenta simultaneously and 

instantaneously. Markovian analysis of such systems gave rise to the Crooks 

theorem and to the Jarzynski equality, to name just two of the main results. Part of 

the interest stemmed from nano-scale atomic force microscopy experiments and 

from laser tweezers experiments in which it is possible to prepare macromolecules 

in initial states and observe their subsequent relaxation to thermal equilibrium.  

  

 Thermostated systems are the natural setting for nano-biology since activity 

at the sub-cellular level is effectively thermostated primarily by liquid water, the 

dominate constituent of cells, that has very good heat capacity and thermal 

conductivity properties, and in which all other cellular molecules are immersed. 

The water molecules communicate their thermostating effects to immersed 

molecules by Brownian motion, that is extremely robust at the nanometer scale. At 

this scale , dynamics is at very low Reynolds number, i.e. viscosity overwhelms 

inertia ([8] Fox, and references therein).  

 

 Our interest in thermostated systems began in the 1970s. We observed ([9] 

Davis and Fox) that the Liouville-Langevin evolution operator could be treated by 

operator algebra techniques that demonstrated that an initial, rapid stage of 

momentum relaxation to Maxwell’s distribution, caused by Brownian motion, is 

followed by a much slower relaxation of the coordinate distribution to Boltzmann’s 

distribution in a macroscopic system. At that time the explicit details of the second, 



slower relaxation, were not put into evidence, only the asymptotic final Boltzmann 

distribution was justified. Stimulated by the more recent interest of other 

researchers in thermostated systems, we have returned to this problem and have 

succeeded in advancing our earlier program. 

 

 Several approaches to thermostated systems exist in the literature. In many 

of these both coordinates and conjugate momenta are explicitly kept in evidence 

for all times. This is significantly the result of computer simulations that provide 

the opportunity to control the details in full phase space. However, in atomic force 

microscopy and laser tweezers experiments only coordinate control is possible 

because momenta are rapidly changing in liquid water on a time scale of around 

      seconds at room temperature  
 

   
 . No possibility exists to simultaneously 

control all relevant momenta, say to reverse all of them at some instant, as is 

possible in computer simulations. When describing what is of interest in such a 

context, coarse-graining is sometimes invoked (e. g. [7] England, [10] Spinney 

and Ford). Coarse-graining arose long ago in order to help Boltzmann attempt to 

combat the assault on his ideas by Zermelo and others ([11] Fox, pp. 262-265, [12] 

Uhlenbeck).  

 

 The basic obstacle faced when explaining the origin of irreversibility in 

many particle, time reversible Newtonian systems is the Poincare recurrence 

theorem. In a spatially bounded (ergodic) system the Newtonian trajectory passes 

through every finite subvolume of phase space infinitely often. Boltzmann had 

argued that phase space was coarse-grained into many, but a finite number of, 

regions, the overwhelmingly largest of which was, for him, the equilibrium state. 

He argued that any trajectory starting in one of the small non-equilibrium regions 

would inevitably find its way into the very large equilibrium region where it would 

spend most of the time, in proportion to the size of the region. Zermelo quoted 

Poincare’s recurrence theorem that said the trajectory would return to the initial 

non-equilibrium region infinitely often, thereby destroying any impression of 

irreversibility. This proved devastating to Boltzmann (suicide by hanging at age 62 

in 1906, possibly because of an undiagnosed bipolar disorder) even though he 

argued that these returns would occur very briefly and represented the fluctuations 

in the macroscopic system.  



 

 It was Gibbs who began to understand how Boltzmann could have won the 

argument ([12] Uhlenbeck). Gibbs introduced ensembles of points in phase space. 

This is related to coarse-graining in that all the points in an initial non-equilibrium 

coarse-grained region could be taken as a Gibbs ensemble. Gibbs would start with 

a compact set of points in some small non-equilibrium region and let Newton’s 

equations of motion dictate the subsequent trajectories. Now each and every 

ensemble point trajectory would eventually re-enter the initial region but they 

would do so at vastly different times as the ensemble of points became very 

filamentous in phase space with time, so that parts of it were in many different 

regions of phase space at any instant of time (ergodicity). On average over the 

ensemble, by far most point trajectories at any instant would be in the large 

equilibrium region of phase space. Those point trajectories outside the equilibrium 

region created the fluctuations observed around equilibrium. The Boltzmann-Gibbs 

picture was a real advance but not the whole story. What determines the size and 

shape of the different coarse-grained regions of phase space? As George 

Uhlenbeck used to say ([12] Uhlenbeck, p. 15), the coarse-graining, or the 

description of the Gibbs ensembles, depended on the “zeal of the observer.” Thus it 

is subjective, and the theory of irreversibility is still not objective. 

 

 Uhlenbeck also saw a way out of this subjectivity. It is called “contraction of 

the description.” ([13] Fox and Uhlenbeck I. and II., [14] Keizer, chapter 9). It has 

its roots in the work of Chapman and Enskog ([12] Uhlenbeck, Chapter VI). An 

example is the reduction of the many particle Newtonian phase space description 

to a hydrodynamic description (Navier-Stokes) in which there are just five 

densities, mass, energy, momentum (3-d) corresponding to the basic dynamically 

conserved quantities. This apparently removes the subjectivity although a strictly 

rigorous derivation of this claim for hydrodynamics is still not known. The efficacy 

of the Navier-Stokes hydrodynamic description in real practical situations such as 

movement of ships and submarines through water and the aviation of planes 

through air provides substantial justification for its validity.  

 

 In the present work we will achieve contraction by exactly integrating over 

all momenta, yielding a contracted description in spatial coordinates alone. The 

motivation for this approach is the realization that our visual observations, even 



using microscopes, see the movement of matter in space, but not the momenta of 

the individual molecules. As already mentioned the momenta change direction 

extremely frequently because of molecular collisions. In cellular biology most of 

the molecules are water and as such not readily visible because water is transparent 

to visible light. They are the carriers of heat to and from all molecules through 

induced Brownian motion of other molecules. Thus, our contraction will be from 

coordinates and momenta of all molecules (including water) to only the 

coordinates (excluding water). An example of this motivation is the observed self-

assembly of a protein complex by ultramicroscopy in which the protein assembly 

is seen in space, paradoxically in the direction of decreasing entropy but where the 

greater, compensating increase of entropy by the associated water molecules goes 

unseen (to do a proper theory of this process it is necessary to explicitly include 

initially protein bound water molecules). To do this contraction for a thermostated 

system we first extend the Liouville equation to the Liouville –Langevin equation 

(sometimes called the Kramers equation) ([15] Chandrasekhar, chapter 2, section 

4) that incorporates the thermostating and eliminates explicit dependence on the 

water molecules, and then integrate out the momenta to achieve contraction of the 

description to the coordinate variables of all other molecules. In the present 

analysis we do not start from pure Newtonian dynamics, as is done in the full 

phase space treatment of thermostats, but instead assume that the inclusion of the 

Langevin operator already has been justified by a first contraction from many 

particle dynamics using the projection operator techniques to be introduced below. 

For simplicity of presentation, the account here will be for a single particle in one 

dimension. Generalization to many particles in three dimensions is straight-

forward although relatively cumbersome. 

 

I. Liouville-Langevin equation 

 

 The Liouville equations describes the evolution of a normalized, positive 

density,         , in phase space that vanishes for infinite momenta and on the 

spatial boundaries. It satisfies the partial differential equation: 

(1) 

             
 

 
                    

where        is the force, and   is non-negative and normalized: 



(2) 

           and                   

 

in which the integration is over all of phase space. If   vanishes at the boundaries a 

simple integration of the right-hand side of (1) shows that normalization is 

preserved for all times. This picture is equivalent to Newtonian dynamics 

represented in phase space. To incorporate a thermostat we add an evolution 

operator called the Langevin operator to the right-hand side. It represents 

Brownian motion and relaxes the momentum part of the distribution to a 

Maxwellian distribution on a time scale     where   is the mass of the particle 

and        is the Stokes formula for the drag,  , on the particle (taken to be a 

sphere, although the generalization to ellipsoids is known ([8] Fox, chapter 2)) of 

radius   in a fluid of viscosity  , intended in the Boussinesq sense. The Langevin 

operator is:  

(3) 

    
 

 
 

 

 
    

where 

  
 

   
 

in which   is the temperature and    is Boltzmann’s constant. The Liouville-

Langevin equation is: 

(4) 

             
 

 
               

 

 
 

 

 
             

The three operators,   
 

 
   ,         , and       

 

 
 

 

 
    do not 

commute so that the formal solution to (4) given by: 

(5) 

                                      

is non-trivially complex.          is a  -translation by an amount that depends on 

 .                is a  -translation by an amount that depends on   and         

is a type of momentum diffusion. Separately, each of these actions is easily 

rendered, but the exponential of their sum is not. In ([9] Davis and Fox) we used 



the three operators’ commutator algebra to go as far as is possible with the algebra 

approach. Because of the presence of         , the commutator algebra does not 

close as a finite algebra (except for the simple harmonic oscillator case), even 

though the (   ) commutator algebra does.  

  

 Suppose you have 

(6) 

             

where         , as is the case here. In this case where         is absent, the 

commutator algebra for   and   creates two other operators:   
 

 
     and 

   
 

  
  

  , so that a finite closed algebra is obtained.  

(7) 

       
 

 
      ,        

 

 
  ,         

and 

                    

This is what we used in ([9] Davis and Fox).  

 

 Suppose the initial state is given by 

(8) 

                     with        
 

   
 
   

     
 

  
    

where    is the Maxwell distribution and        is normalized, positive but 

otherwise arbitrary, then from the commutator algebra we get exactly the 

contraction of the description  

(9) 

                    
 

 
    

        

where 

                   

and 

   
 

  
 



The last definition is Einstein’s formula for the diffusion constant and is produced 

by the contraction.  The time dependence in this non-Markovian generalization of 

the standard Markovian diffusion equation generates the Ornstein-Furth formula  

([16] Uhlenbeck and Ornstein) for the mean square displacement for both long 

times and for short times compared to the Langevin time scale      . Note that 

although the initial phase space distribution is factored into a  -part and a   -

part, the   and   dependence becomes intertwined by the dynamics for all    . 

This is the result we desire to generalize for the inclusion of the potential energy 

term     .  

 

II. Projection Operators 

 

 We will use a modification of the Zwanzig-Mori ([17] Zwanzig, [18] Mori) 

projection operator technique ([11] Fox).  Let   and   be arbitrary functions of   

and  . Focus on the  -dependence. Let the inner product in p-space be denoted by 

and defined by 

(10) 

             
      

Note that unlike Zwanzig-Mori we choose the weight function to be the inverse of 

the Maxwell distribution. The projection operator,  , is defined by 

(11) 

          
                    

so that 

          
                                

This operator takes the phase space distribution,  , into the product of the 

contracted spatial distribution,  , times the Maxwell distribution,   . (The last 

equality in Eq.(11) follows from the second line of Eq.(9).) 

 

 Referring to Eq.(4) the Liouville operator is 

(12) 

           

and the Liouville-Langevin operator is 



(13) 

       

where 

      

Because                     

(14) 

              

since 

               

Therefore 

(15) 

                                     

because 

            

and 

           

given the choice of weight function for the inner product. In general   has the 

properties 

(16) 

       

                     

         

that characterize orthogonal projection operators   and    . 

 

 Starting from Eq.(4) in the form        we get the projection equations 

(17) 

                   

and 

                               

The formal solution to the second equation is 

(18) 

                                     

                                      
 

 

 



wherein Eq.(16) has been used for     in both lines. The initial value term that is 

the first line vanishes because of Eq.(14). Substitution into the first line of Eq.(17) 

yields 

(19) 

                                                 
 

 

 

This contracted equation can be simplified significantly. From the second lines of 

Eq.(11) and Eq.(13) it follows that  

(20) 

                                       

Therefore, it follows that  

(21) 

            
               

because 

             
 

 
   

 

 
             

and 

      
          

where the last line follows from integrating the product of an odd function of   and 

an even function of   over a symmetric  -domain. Clearly, for arbitrary   this 

implies 

(22) 

                                

Thus, any occurrence of the structure     makes a term vanish. The projection 

equation, Eq.(19) becomes 

(23) 

                                       
 

 

 

This is manifestly non-Markovian as a result of the contraction of the description 

and as is manifested by the time convolution integral. It is the basic equation from 

which all othe results follow including the central result in Eq.(43). It was used 

originally by Mori to attempt to justify the Langevin equation. Instead of obtaining 



the Markovian Langevin equation he obtained the “generalized Langevin equation” 

that is non-Markovian ([11] Fox, sections I.3 and I.4). 

 

III. Boson Operator Representation 

 

 The  -dependent analog to the Maxwell distirbution is the Boltzmann 

distribution,                     in which                  . The  -

dependent inner product is defined by 

(24) 

            
      

in which we have again used the inverse distribution for the weight function. 

Define boson operators   and    for the inner product in Eq.(10) by 

(25) 

    
 

 
     

 

 
   

and 

    
 

 
    

These operators are dimensionless and satisfy the commutation relation 

(26) 

         

Define boson-like operators   and    for the inner product in Eq.(24) by 

(27) 

    
 

 
  

 

 
       

and 

    
 

  
    

These operators have the dimensions of inverse seconds and satisfy the 

commutation relation 



(28) 

       
   

 
 

Only for the special case of the harmonic oscillator potential,         , are 

these operators proportional to genuine boson operators, and the right-hand side of 

Eq.(28) becomes   . We could divide   and    by   to make them dimensionless, 

but only for the harmonic oscillator potential does the commutator algebra close 

after one iteration, like for genuine boson operators. Keeping the dimensions as is 

will serve as a reminder of this limitation. 

 

 The  ,    ground state is determined solely by the commutation relation and 

the inner product.  We may write 

(29) 

             

and 

         

since 

            

Therefore we also have the canonical identities 

(30) 

           

    
 
            

               

 

 What is the expression for the projection operator,  ,in terms of the boson 

operators? The answer is 

(31) 

           

a direct product of the projection onto       and the identity in  -space. Note that 

we can write 

(32) 

   
 

 
    

and 



           

For Eq.(23) we need 

(33) 

            

                      
 

 
                 

                           
 

 
    

because 

        

and 

        

Moreover, it follows similarly for arbitrary   that 

(34) 

                   
 

 
                  

and 

                
 

 
                               

Using                
                    and Eq.(34) we conclude that  

(35) 

         

                                              
 

 

 
 

 
                

The expectation value over the first excited state in the momentum distribution 

amounts to integrating out all momentum dependence and leaving a reduced 

(contracted) distribution in the spatial variable only. The expression above retains 

an operator character in the  -variable. It may be noted immediately from the 

definition in Eq.(27) that the Boltzmann distribution is a stationary solution of this 

equation because         . It may be demonstrated that the Boltzmann 

distrbution is the unique equilibrium distribution to which any initial distribution is 

driven by Eq.(35). We will leave this matter until later, after we have developed 

more manageable  representations of the equation. 

 



IV. Non-commutativity and Time Ordered Exponentials 

 

The convolution kernel in Eq.(35) is the exponential of the sum of three mutually 

non-commuting terms. Because of the commutation identities 

(36) 

                             

and 

                              

the kernel can be written 

(37) 

                                    
 

 
      

           
 

 
       

                             
 

 
       

 

 

                 
 

 
          

In this expression we have the time ordered exponential defined by 

(38) 

                  
 

 

                                   
    

 

  

 

 

 

 

   

 

in which                and the operstor,     , does not commute 

with itself for two different times. This is the left-ward ordered exponential with 

later times to the left of earlier times. It satisfies the first order differential identity 

(39) 

 

  
                  

 

 

                        
 

 

  

Especially note that the   out front on the right hand side is at time   and is on the 

left. The presence of the factors      
 

 
    in Eq.(37) come about in a manner 

similar to the simplified rendering below; 

(40) 

             
 

 
                

 

 
      



                       
 

 
                  

 

 
    

 

 

  

Using Eq.(39) the  -derivative of both sides is the same, and both sides agree for 

   , sufficient conditions for a unique solution to a first order equation. The 

exponent factor on the right-hand side may be expressed by a commutator operator 

as 

(41) 

          
 

 
                  

 

 
               

 

 
          

              
 

 
  

in which the the commutator operator,        , is defined by          

        and the powers of this commutator implicit in its exponential above are 

just the iterated commutators, and we have used Eq.(36). 

 

 We may now use Eq.(37) in Eq.(35) and let the leading exponential factor 

act leftwards on the state    , i.e. 

(42) 

             
 

 
                  

 

 
  

yielding the contracted equation (our central result) 

(43) 

                  
 

 

           
 

 
   

                             
 

 
       

 

 

                 
 

 
          

            

 It might be thought that for the harmonic oscillator potential we have an 

exactly solvable dynamics. However the coupling of the effective Langevin 

oscillator operators with the real oscillator operators is multiplicative rather than 

additive. This renders the two-coupled-oscillator problem insolvable as has been 

noted by Louisell, ([19] Louisell). Nevertheless, for the contracted description 



given here the oscillator case will be seen to be tractable and will later serve as a 

check of the validity of  the central result given in Eq.(43).  

 

V. Elementary Checks of Eq.(43) 

 

 The minimal check is for the case  =0. This makes       (see Eq.(27). 

Eq.(43) in turn becomes 

(44) 

              
 

 

           
 

 
   

                                
 

 
       

 

 

                
 

 
             

          

If we expand the time ordered exponential according to the definition in Eq.(38) 

the         expectation values are non-zero for even order terms only, since they 

must include equal amounts of   and   . That means the         expectation 

value of the time ordered exponential is an even order only power series in    with 

time dependent coefficients. The first few terms are (using Eq.(30) and Eq.(33)) 

(45) 

                                
 

 
       

 

 

                
 

 
             

                

  

 

 

 

     
 

 
          

         
 
         

 
          

  

 

 

 

     
 

 
                

The complexity of the terms in the series grows rapidly with the order of the term. 

This results from the different orderings of equal amounts of            and 

           .  For example, in the above expression we have explicitly the second 



and fourth order terms for    . The corresponding coefficient for the sixth order 

term (containing       
 
 and an eight-fold time integral) works out to be 

(46) 

                     

 Consider calculating the moments of  . Multiply Eq.(44) from the left by   

and integrate by parts over  . Because of the two factors of    outside the time 

ordered exponential, the result vanishes. 

(47) 

                 

Consequently        for all time. Choose the origin of coordinates to be     . 

Now do the same for   . Only the   in the time ordered exponential expansion 

yields a non-zero result 

(48) 

    
                                          

 

 
       

 

 

 

  
 

  

 

 
         

 

 
   

             
 

 
   

This is precisely the same result obtained in the same way from Eq.(9). The 

integral of this equation is the Ornstein-Furth equation ([16] Uhlenbeck and 

Ornstein) 

(49) 

            
 

 
       

 

 
      

Using Eq.(9) we can also get       and check it against the Gaussian moment 

property that says 

(50) 

                   

Eq.(9) implies  

(51) 

    
                                

 

 
        



Note that the moments on the left and right hand sides are evaluated at time t. 

Putting Eq.(49) into Eq.(51) verifies Eq.(50). This result also follows from Eq.(44) 

although in a rather different way. Now we must keep the second term in the 

expansion of Eq.(45).  

(52) 

    
                   

                         
 

 
   

 

 

              

  

 

 

 

     
 

 
                

   
 

  
              

 

 
       

 

 

  
 

  
        

  

 

 

 

     
 

 
          

   
 

  
    

 

 
          

 

 
       

 

 

  
 

  

 

 
     

 

 
           

 

 
       

     
    

 

 

 

 
          

 

 
     

 

 
       

 

 
     

       
 

 
           

 

 
       

 
 

  
        

  

wherein the last equality requires finishing the integrals. Note that       appeared 

part way through, at time   and not at time  .  

 

 One could proceed to calculate higher order moments by expanding the time 

ordered exponential to higher order. However, since diffusion is a Gaussian 

process the first two moments determine all higher order moments. From Eq.(49), 



using       to denote      
 

 
       

 

 
     , the distribution function for   

is given by 

(53) 

       
 

        
     

  

      
  

However, this is a non-Markovian generalization of diffusion because of the non-

linear time dependence in      . 

 

VI. What it Means to be non-Markovian 

 

 The distribution function Eq.(53) is actually the conditional probability 

distribution, given that the diffusing particle is initially at    at time    and is 

distributed at    at time      . We write Eq.(53) given these conditions as the 

two time conditional probability distribution ([20] Fox, [21] Wang and Uhlenbeck) 

(54) 

                
 

            
     

       
 

          
  

where 

                     
 

 
             

 

 
      

Note that  

(55) 

   
     

                         

For Markovian diffusion, we have instead           
 

  
        . This is 

valid for times         
 

 
. For the non-Markovian diffusion,           is a 

nonlinear function of time whereas for the Markovian case it is a constant times  

        i.e. linear in time.  

 In the Markovian case , the Smoluchowski ([21] Wang and Uhlenbeck, note 

II of the appendix), or Chapman-Kolmogorov ([22] Arnold, chapter 2), equation is 

satisfied 

(56) 



                                              
 

  

 

for        . This equation in turn can be generalized to include many 

intermediate points (multi-time correlation distributions) ultimately leading to a 

path integral representation of the Markovian time evolution. Indeed, this is what 

has been done at the heart of the arguments made by Jarzinski and by Crooks ([4] 

Jarzynski and [3] Crooks). For the non-Markovian case given by Eq.(54), Eq.(56) 

is no longer valid. Indeed, the Doob theorem ([21] Wang and Uhlenbeck, [23] 

Doob) implies that the validity of Eq.(56) requires that           
 

  
 

       . 

 Even for the simple case of diffusion, events occurring on the time scale 
 

 
 

or shorter times necessitate a non-Markovian description and do not permit the 

Markovian analysis and path integral techniques used in phase space by Jarzynski, 

Crooks and many others. In the general (   ) non-Markovian case the two time 

correlation distribution,                , no longer determines all higher order 

multi-time correlations as it can do in the Gaussian Markovian case.  

 

VII.a Advanced Checks of Eq.(43) 

 

 The harmonic oscillator potential,   
 

 
     , provides a more 

penetrating look into Eq.(43).  Multiplying from the left by   and integrating by 

parts implies that the only contribution from the time ordered exponential is from 

the first term,  , and the leading term of the right-hand side is      
 

   
 

yielding 

(57) 

       
 

   
              

 

 
     

 

 

 
 

   
              

 

 
  

 

 
          

 

 

                  
 

 
     

 

 

 



Therefore, by differentiation, we get the standard equation for a damped harmonic 

oscillator 

(58) 

  
       

 

 
              

 Much more difficult to obtain is the equation for      . This is because 

      
 

   
  and   times the time ordered exponential creates non-vanishing 

terms from every order of the expansion of type Eq.(38). What we saw in Eq.(45) 

and Eq.(46) for    , becomes for the harmonic oscillator the even order terms 

beginning with 

(59) 

                            
 

 
  

                  
 
                  

 

 
 

                           
 

 
     

                                               
 

 
 

                                      
 

 
 

                                      
 

 
 

                                      
 

 
 

                                    
 

 
     

The complexity increases rapidly with the order index,   . The order of the time 

variables is sequential for the first term only for each order. The variations are in 

evidence for      and for     .What becomes clear upon further analysis is 

that for even order   , there is always a term        
 

 Moreover this is the only 

term that does not contain consecutive   ’s somewhere in the product and 

consecutive   ’s always come before consecutive  ’s. The significance of these 

facts is that a factor of   from the left of the time ordered exponential will create 

non-zero results for each        
 

 factor and for no others. That   factors cannot 

occur to the extreme left follows from the fact that they occur as              



and                  . When integration by parts is done the effect on a term 

such as       
 

 is       
 
     . Putting all these pieces together in Eq.(43) 

yields 

(60) 

    
    

 

   
    

 

 

          
 

 
   

           
 

   

              

     

 

  

 

 

 

                  
 

 
   

  
 

   
  

 

 
          

If we define the middle bracket containing the multiple time integrals to be 

       then Eq.(60) can be written more compactly as 

(61) 

    
         

 

 

          
 

 
        

 

  
          

The problem is reduced to evaluating       . 

 

VII.b Evaluation of        and       

 

(If the reader prefers not to go through the details of this analysis, the final result is 

Eq.(94).) 

 The time derivative of        is straightforward 

(62) 

            

          
 

   

              

     

 

  

 

 

 

                  
 

 
  

                     
 

 
   

 

 

 

                 

  

 

  

 

 

 

                 
 

 
   



        
 

   

               

     

 

  

 

 

 

                 
 

 
  

Note the new location for   inside the exponential as well as in the upper limit of 

the first integration. This leads to the equation and initial conditions 

(63) 

  
         

 

 
                   

with 

                            
             

 It is instructive to treat this second order equation in one variable as a first 

order equation in two. Introduce   
 

   
   .   and   are dimensionless and   

satisfies      
 

 
       with initial condition         . Now write the 

two variable equations in matrix form 

(64) 

   
 
 
   

    

     
 

 

  
 
 
  

Let the matrix   be defined by 

(65) 

   
    

     
 

 

  

This matrix can be expressed in terms of the Pauli spin matrices 

(66) 

    
  
  

       
  
   

       
   
  

  

yielding 

(67) 

   
 

  
               

Using the initial conditions at    , the solution to Eq.(64) is 

(68) 



 
      

      
              

 
 
 

           
 

  
           

 

  
            

 
 
  

because    commutes with the other two Pauli matrices and can be factored out in 

front. Any good introductory quantum mechanics book will have a justification of 

the identity 

(69) 

          
 

  
           

            
  

   
       

 

           
  

        

   

       

 
 

  
           

Plugging this into Eq.(68) and reading off the upper component of the 2-vector 

gives 

(70) 

                  
 

  
 

 

 
 
           

  

   
     

 

           
  

        

   

       

 

  

 

 
 

 

This may be placed inside Eq.(61). The product in the kernel can be rendered as a 

sum of exponentials 

(71) 

          
 

 
         



 

 

 

 
 

 

   
 

  

 

   

       
 

            
  

  
        

  

   
       

  

 

   
 

  

 

   

       
 

            
  

  
        

  

   
     

 

  

The 2 in Eq.(61) cancels the   in Eq.(71) so that we may define        to be the 

right hand side of Eq.(71) sans the  . This makes Eq.(61) look like 

(72) 

    
        

 

 

       
 

  
          

We are now in a position to use Laplace transforms, and especially the rules for 

Laplace transforms of convolution integrals and Laplace transforms of derivatives. 

Denote the Laplace transform variable conjugate to   by  , and denote the Laplace 

transform of a fucntion of  ,     , by the same function of   with a hat,      . The 

Laplace transform of Eq.(72) is 

(73) 

      
    

        
 

   
        

   

From the definition of        implied by Eq.(71) we find 

(74) 

      

 

   
 

  

 

   

       
 

 
 

  
  
  

    

       

  

 

   
 

  

 

   

       
 

 
 

  
  
  

    

       

 

Simple algebra gives 

(75) 



     
  

  
  

     
   

         
 

Define   by 

(76) 

   
  

   
     

Therefore 

(77) 

      
   

 
       

  
  

       
 

       
  
  

   

   
  
   

 

 
  

       

 

 
    

  
  

    
 
 

  
   

      

 

and 
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where 

    
  

  
  

  

  
     

and 

    
 

 
  

  

  
     

Thus, 

(79) 



     
  

  
              

 
  

 
  

    

   
 
              

 

We must now take the Laplace transform inverse of this quantity. 

 Computing the Laplace inverse of the right hand side of Eq.(79) makes use 

of several Laplace transform rules for      and its Laplace transform      : 

(80) 

           

                   

                       
      

 

 
              

 

 

 

Simple algebra verifies 

(81) 

 

   
 
              

 
 

    
  

  

 
 

  
 
 

 
 

 
 

 

    
  

 

 
 

 

    
   

The inverse Laplace transform of this quantity is 

(82) 

     
 

    
  

  

      
 

 
   

 

 
         

 

 
          

with the properties        and         . Using Eqs.(79-82), we get 

(83) 

        
    

    
 

 
      

  

  
        

 

  
  

  

   
        

 

 

 

Although involving algebra only, the reduction of this expression takes quite a lot 

of manipulation. Begin with 

(84) 

   
    

 

 
      

  

  
         



        
 
 

    
 
 
  

  
  
  

   
  

              

    
  

  

 

 
 
 
 
  

  
  
  

   
  

              

    
  

  

 

From Eq.(78) it follows that 

(85) 

  
   

 

 
         

and 

 

 
  

  
  

  
   

  

  
    

 

  
   

  

  
    

Putting this into Eq.(84) and then that result into Eq.(83) yields 

(86) 

      
  
 

    
  

  

         
 

 
    

 

  
   

  

  
            

  
 

  
   

  

  
              

 

 
  

    
  

  

      
 

 
   

 

 
         

 

 
          

 

  
   

    
  

  

  
 

 
      

 

 
      

 

   

            

 
 

   
              

Now note that 

(87) 

 

 
 

 

   
 

 

   
 

 
 
 

          

     
 

 
       

  

   

   
 



 

 
 

   
     

  

  
  

and define   by 

(88) 

   
  

  
     

Eq.(86) becomes 

(89) 

      
 

    
 

 
  

   
 

 

   
      

 

 
   

 

 
 

 

   
        

 

   
          

 
 

  
 

 

   
       

 

 
     

 

 
        

 

 
          

 
  
 

     
     

 

 
        

 

  
   

  

  
           

  
 

  
   

  

  
              

 
 

    
 

 
 

  
 

 

   
       

 

 
        

 

 
 

 

   
          

 

 
 

 

   
           

 
  
 

     
     

 

 
        

 

  
   

  

  
           

  
 

  
   

  

  
              

 
 

    
 

    
  

 

    
      

 

 
   

   

   
       

 

 
   

 

   
   



   
    

  

   
 

  

  
 

  

  
           

   
  

   
 

  

  
 

  

  
             

 
 

  
  

 

 
 

 

   
          

 

 
 

 

   
            

The terms inside     can be simplified using the identity 

(90) 

 
  

   
 

  

  
 

  

  
    

 

  
   

  

  
    

Therefore we get 
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Finally, putting everything together, we get 

(92) 

      
 

    
    

  
 

    
      

 

 
    



 

 
 
 
   

   
   

    
  

  

   
          

 

  
        

 

 
 

 

One more observation puts this formula into its final form 

(93) 

      
  

 
  

 

  
     

  

 
  

 

 

 

 
 
 
   

   
   

    
  

  

   
          

 

  
        

 

 
 

 

Therefore, 

(94) 

      
 

    
    

  
 

    
      

 

 
        

  

 
  

 

  
     

  

 
  

 

 

and agrees with ([15] Chandrasekhar, Eq.(217)). 

 

VIII. Non-Markovian Distribution for the Harmonic Oscillator 

 

 Return to Eqs.(57-58) to see how the first moment of   evolves in time. The 

initial conditions for Eq.(58) are         and          (see Eq.(57)). The 

solution is 

(95) 

            
 

  
        

  

 
  

 

  
     

  

 
   

Introduce the short-hand notation  

(96) 

           
 

  
        

  

 
  

 

  
     

  

 
   

so that we can write 

(97) 

            

and 



      
 

    
    

  
 

    
       

Clearly        and        yielding the equipartition of energy result for 

     . The variance,   
               

 , is equal to 

(98) 

  
  

 

    
          

Because we have a Gaussian process we can immediately write down the 

conditional probability distribution 

(99) 

              
 

 
  

    
         

     
           

 
    

         
  

This is manifestly non-Markovian because of the   dependence of     . Note the 

two limits 

(100) 

   
    

                      

and 

   
   

                       

where          is the normalized Boltzmann distribution for the potential energy 

     
 

 
     . In the Gaussian Markovian case, the distribution    could be 

used to construct all multi-time correlation functions ([21] Wang and Uhlenbeck, 

[11] Fox), but not in the non-Markovian case that we have here.  

 

IX. Non-equilibrium Thermodynamics 

 

 Instead of considering phase space trajectories and their time reversed 

partners, we have contracted the description and derived the time evolution in 

coordinate space. Time reversed phase space trajectories require the ability to 

reverse each and every particle momentum simultaneously and instantaneously. 

While this is possible in a molecular dynamics computation on a computer it is 

impossible in real experiments, and will always remain so. Alternatively we may 



ask if thermodynamic ideas can be extended into the non-equilibrium regime. For 

thermostated systems this means we should look at the Helmholtz free energy,  , 

that attains a minium value in equilibrium.  

  

 We will see that in the “over-damped” case (      ) the Helmholtz free 

energy for a harmonic oscillator decreases monotonically in time. In the under-

damped case (           ) monotonicity is broken and the Helmholtz free 

energy shows damped oscillations as it approaches its equilibrium value. The 

Helmholtz free energy is defined by 

(101) 

       

in which   is the internal energy defined by 

(102) 

                        

and   is the entropy defined by 

(103) 

                                        

where   is the Kelvin temperature,    is Boltzmann’s constant and the logarithm 

term could have a constant included to make its argument appropriately 

dimensionless but this would not show up in the time derivative and is, therefore, 

omitted. The time derivative of   is  

(104) 

                                                     

in which we have dropped the term  

(105) 

       
 

             
                              

                          

Eq.(105) follows from Eq.(44) because               here is        there and the 

right hand side of Eq.(44) begins with    which upon   integration by parts 

vanishes since   vanishes at the boundaries. In general, the non-Markovian nature 



(convolution integral) of                 given by the right hand side of Eq.(44) 

makes this difficult to analyze. For insight, we return to our simple examples. 

 

 The first example is    . The solution for               is Eq.(54). 

Eq.(104) in this case becomes 

(106) 

                                                

           
 

 
               

      
 

         
                 

      
           

         
 

     
             

 
 

 

         
 
             

 
 

     
 

   

This is a monotone decrease of the Helmholtz free energy and suggests that 

thermodynamics applies to all non-equilibrium states in this special case. The 

monotonicity follows from the positivity of the numerator and of the denominator 

of the fraction, for all times. 

 

 A more advanced example is the harmonic oscillator. In this case the internal 

energy is 

(107) 

      
 

 
                    

 

 
        

 
 

  
          

 

 
     

       

where we have used Eqs.(97-98). The entropy is given by 

(108) 



                                       

          
 

 
   

  

    
          

 
           

 
    

         
              

   

 

 
   

  

    
             

             

 
    

         

 
  

 
      

  

    
            

Thus, for the harmonic oscillator, 

(109) 

  
 

  
          

 

 
     

       
 

  
      

  

    
            

Therefore, the time derivative  is 

(110) 

     
 

  
    

 

         
  

 

 
     

              

  
 

 
 

     

         
       

             

where      is defined in Eq.(96). The factor   was introduced in Eq.(88) and is 

real in the overdamped case, and is imaginary in the underdamped case. Consider 

the real case first. Introduce the parameter    
   

 
 
 
. Overdamped case means 

    and underdamped case means    .We can rewrite       in the form 

(111) 



     
 

 
   

 

    
      

 

  
          

 
 

 
   

 

    
      

 

  
           

Elementary methods can be used to verify, in the overdamped case,         . 

Therefore the sign of     in Eq.(110) is determined by the sign of       . Algebra 

can be used to easily verify 

(112) 

     
  

      
     

 

  
                  

 

 
        

   

The Helmholtz free energy for the overdamped harmonic oscillator is monotone 

decreasing, and we can conclude that non-equilibrium thermodynamics applies far 

from equilibrium in this case. 

 

 The situation is fundamentally different in the underdamped harmonic 

oscillator case  (    and   is imaginary). In this case   is expressed as 

(113) 

        
 

 
 

and the hyperbolic functions in Eq.(96) become trigonometric functions so that 

(114) 

          
 

  
           

 

 
    

 

    
        

 

 
     

      
 

  
   

 

   
      

   

 
      

where 

         
 

    
  

and 



        
   

 
 

Clearly, as   goes from    to  ,   goes from 
 

 

 
 to   and        is positive for all 

of this. Thus at    ,      is positive, but then it shows damped oscillations 

during which      becomes negative repeatedly. For example as soon as   

increases so that    
   

 
      passes 

 

 
 ,      becomes negative. In Eq.(110) the 

bracketed coefficient remains positive for all time because of the squares, but the 

factor of            oscillates, partly because of the      oscillations just 

discussed, and partly from the        oscillations to be discussed. From Eq.(114) 

we have 

(115) 

        
 

  
            

 

  
        

   

 
      

This quantity also oscillates, although out of phase with     . Using the first line 

of Eq.(114) one gets directly 

(116) 

        
 

  
     

       
 

  
      

   

 
      

   

 
     

 

  
      

   

 
     

      
 

  
     

 

  
 

 

  
       

   

 
   

   
 

  

 

    
   

   

 
       

   

 
     

          
 

  
   

   

 
      

   

 
    



The sign of the product            is determined by the sign of  

(117) 

      
   

 
          

   

 
    

 

    
      

   

 
     

 
 

 
       

   

 
    

 

    
       

   

 
    

Note that the second term of the last line is positive for all    . Only the first 

term can change the sign and this happens when the first term is more negative 

than the second term is positive. As it turns out, there is always a finite range of 

values of   for which can make the expression in Eq.(117) negative for any    . 

To see this note initially that if   is very much greater than   then the first term 

dominates and periodically changes sign. The issue is whether this is possible for  

    . Look at the first line of Eq.(117) and assume     
 

  
 for large  . 

Changes of sign in Eq.(117) occur when (assuming       
   

 
    does not vanish 

at the same time, a verifiably safe assumption). 

(118) 

      
   

 
           

   

 
      

This is equivalent with 

(119) 

  
   

 
           

 

 
  

which happens periodically in  . The amount of the   axis for which the expression 

in Eq.(117) is negative decreases as   gets large. Negative values correspond with 

increases of the Helmholtz free energy. Therfore, in the case of the underdamped 

harmonic oscillator the generalization of thermodynamics to the non-equilibrium 

states fails because      is no longer monotonically decreasing. 

 

X. Underdamping in Sub-cellular Biology 



 

 Generally the molecular events occurring in sub-cellular biology are 

overdamped. An example is the elasticity of the neck linker of the kinesin 

molecule the attaches to the kinesin head and plays a central role in the kinesin 

mechanism ([8] Fox, chapter 4). The harmonic oscillator approach to the neck 

linker elasticity results in        an extreme overdamped value. Not only is non-

equilibrium thermodynamics reasonable for this regime, it is possible to 

approximate the dynamics by a Markovian dynamics for which the path integral 

techniques of Jarzinski and Crooks are valid (although here we are in coordinate 

space only, not full phase space). 

 

 The Markovian approximation to Eq.(43) can be justified with various 

degrees of rigor. Here, we will see how it comes about using the Dirac delta 

function because this approach is very transparent. Suppose you have the equation 

(120) 

                           
 

 

 

If   is large, write this equation in the form 

(121) 

       
 

 
    

 

 
                 

 

 

 

and contemplate the limit    . Because 

(122) 

    
 

 
              

 

  

 

we can write 

(123) 

   
   

    
 

 
                 

 

 

                
 

 
    

 

 

 

 

where the factor of ½ arises from the end point rule for delta function integrals, i.e. 

  is in the delta function and is the upper limit of integration. Thus, for large 

enough   it follows that  

(124) 



       
 

 
    

 

 
                  

 

 

 

 
     

If we apply this result to Eq.(43), we see that the limits of integration inside the 

time ordered exponential become the same, i.e.     so that the time ordered 

exponential simply becomes  . Thus the Markovian approximation to Eq.(43) is 

(125) 

          
 

 
          

 

  
                 

wherein we have used Eq.(27) for general potential energy  , and the constant in 

front of the right hand side is Einstein’s formula for the diffusion constant. 

Eq.(125) may be recognized as diffusion in a potential and is sometimes called the 

Smoluchowski equation ([15] Chandrasekhar, pp. 40-41). Because the Markov 

approximation requires that   is large (the relaxation time is very short) this 

approximation only holds for the overdamped case. 

 

 Using the last line of Eq.(9) we can show that the Helmholtz free energy 

given by analogs of Eqs.(101-103) satisfies 

(126) 

                                       

                                              

                                                 

               
 

      
                            

        
   

      
                   

 
   

The third line follows from integration by parts and the vanishing of   on the 

boundary. Thus a non-equilibrium thermodynamics is valid for all non-equilibrium 

states in the Markov approximation and the Helmholtz free energy decreases 

monotonically in an undriven thermostated system. This situation in no longer 

valid in the full non-Markovian picture (Eq.(43)) as we saw for the underdamped 

harmonic oscillator and as would be true for underdamped motion in a general 

potential. 



 

 Underdamped motion in sub-cellular biology is rarely documented because 

this realm is seriously overdamped in most situations. In the example of kinesin 

referred to earlier the elasticity time scale was found to be nanoseconds, whereas 

the damping time scale was picoseconds. This means the kinesin dynamics is very 

overdamped. Recently there have been claims that some protein-ligand interactions 

are indeed underdamped ([24] Turton et al.). In these studies the elasticity time 

scale is picoseconds and because the proteins fragments of the type studied are 

much larger than the kinesin heads the relaxation time scale is much less than 

picoseconds. These circumstances make the system underdamped and, therefore, 

non-Markovian. I quote from the abstract of Turton et al.: 

 

 “Low-frequency collective vibrational modes in proteins have been proposed as being 

responsible for efficiently directing biochemical reactions and biological energy transport. 

However, evidence of the existence of delocalized vibrational modes is scarce and proof of their 

involvement in biological function absent. Here we apply extremely sensitive femtosecond 

optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its 

complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational 

modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen 

upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is 

underdamped and not simply solvent-controlled as previously assumed. The presence of such 

underdamped delocalized modes in proteins may have significant implications for the 

understanding of the efficiency of ligand binding and protein–molecule interactions, and has 

wider implications for biochemical reactivity and biological function.” 

 

Thus the significance of underdamped motion in sub-cellular biology may grow in 

the future. Its description is intrinsically non-Markovian and not controlled by 

thermodynamic rules. In particular the Helmholtz free energy does not decrease 

monotonically. Perhaps the content of this paper will help in the application of 

physically realistic methods to the understanding of thermostated systems in nano-

biology and in nano-technology. 
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