THE
PayYsics OF FLUIDS

VoLuME 13, NUMBER 8

Avcust 1970

Contributions to Non-Equilibrium Thermodynamics. I. Theory
of Hydrodynamical Fluctuations*

RoxaLp Forrest Fox §
Physics Department, University of California, Berkeley, California 94720
AND
GroRragE E. UHLENBECK

Rockefeller University, New York, New York 10021
(Received 29 January 1970)

The velocity of a particle in Brownian motion as described by the Langevin equation is a stationary
Gaussian-Markov process. Similarly, in the formulation of the laws of non-equilibrium thermody-
namics by Onsager and Machlup, the macroscopic variables describing the state of a system lead to
an n-component stationary Gaussian-Markov process, which, in addition, these authors assumed to
be even in time. By dropping this assumption, the most general stationary Gaussian-Markov process is
discussed. As a consequence, the theory becomes applicable to the linearized hydrodynamical equations
and suggests that the Navier-Stokes equations require additional fluctuation terms which were first
proposed by Landau and Lifshitz. Such terms and their correlation properties are presented, and these
equations are then used to derive the Langevin equation for the Brownian motion of a particle of

arbitrary shape.

I. INTRODUCTION

Several concepts from the theory of stochastic
processes will be used throughout this paper. Tor
convenience, a few of the basic definitions will be
given here.’

Let a(f) denote a random or stochastic process.
The random function a(f) may represent a single
random process or it may represent a collection of
n random processes, a,(t). It is often convenient in
the latter case to omit the indices and to use a
matrix notation wherein a,(f) is written as a column
matrix a(f). When indices are used, the summa-
tion convention for repeated indices will be
invoked.

A random process is defined by a hierarchy of
probability distributions of which the first, W,(a, ¢),
is defined as the probability at time ¢ that the
value of a(f) is between a and a + da. The conditional
probability distribution function, Pj(at, | ast), is
defined as the probability at time ¢, that the value of

a(t) is between a, and a, + da, given that at time
t, < i, a(f) had the value a,.

A stationary process, a(f), is defined by the require-
ment that all distribution functions for it are in-
variant under time translation. As consequence
Wi(a, t) is independent of ¢, and Py(ad: | asts)
depends upon time through ¢ — ¢, only. For sta-
tionary processes these two distributions will be
denoted by W,(a) and P,(a, | ast) where ¢ = t, — ¢,.

A stationary process, a(f), is also Gaussian if all
its distributions are of Gaussian form. For W, (a)
and P(a; | a5t) this requires

Wi(a) = W, exp [—31a'Ea]
and
P.,(a, | a,, ©)
= P, exp [—3aiA()a, — aB(N)a, — ta;C(f)a,].

When a(f) is intended to represent an n-component
process, then E, A, B, and C are matrices and a, a,,
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and a, are column matrices. at(f) is a row matrix
adjoint to a(t). The proportionality factors are deter-
mined by the normalization conditions

f Wi(a) da = 1 1)

and

ng(al | az, t) daz = l.

Stationary Gaussian processes are also Markov
processes if P, satisfies the so-called Smoluchovsky
equation

Pya [, ) = [ Pulan |, £ = 9Psfa | a2, 9) da (2

for all s between zero and ¢.

The Langevin equation describes the Brownian
motion of a slowly moving colloidal particle in a
fluid. The equation is

B o) + P, ®

where M is the mass of the particle, u(f) is its veloc-
ity, « is a positive friction constant, and F(f) is a
purely random stationary Gaussian fluctuating force
which is defined as a process with mean value zero
and correlation formula

(FOF(s)) = 2D ot — s), 4

where D is a constant and the factor 2 is for con-
venience as will become evident. Equation (3) with
condition (4) has been shown to produce a sta-
tionary Gaussian-Markov process in the random
variable u(f)." The P, function in this case is

Pu, |u, 5 = {271'0'2[1 - Pz(t)]}_l/z

[u — usp()I’
"Oxp (‘202[1 —ppz(l)]> ’

where ¢ = D/aM and p(t) exp (—at/M). The
relation

]

lim Py(uo | u, &) = Wi

=

may be used to get W,(u) which is

D\ ( aMu2>
W) = (27rm> exp \ =55 )

Because W,(u) is also given by the requirement
that it should be the Maxwell distribution

®)

B KBT)-uz (___ Muz)
W) = (21r i exp 2K, T) ' 6)
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where K is Boltzmann’s constant and 7' is the
temperature of the fluid, then equality of (5) and
(6) results in

D = KgTo. Q)

Equation (7) is Einstein’s relation and leads to the
prototype fluctuation—dissipation theorem

(F)F(s)) = 2K5Te 8(t — s). 8

Identity (8) is so named because it connects the
mean square correlation of the fluctuating force
with the dissipative constant a.

A generalization of these ideas has been given by
Onsager and Machlup in their formulation of the
basic laws of non-equilibrium thermodynamics.” A
system is described by n maecroscopic variables
a(t), -+ ; o). Their equilibrium values are taken
to be zero. Near equilibrium the entropy is given by

S = 8 — 3Kza:()E;;a;(t), 9

where S, is a constant and E;; is a symmetric,
positive definite matrix. The linear regression equa-
tions are assumed to have the form

%a;(t) e KuLoEaa() + P, (10)

where L;; is a matrix which is non-singular and
has eigenvalues with positive real parts. F.(f) is a
purely random stationary Gaussian fluctuating force
component satisfying

F:OF (s)) = 2Q:; 8(t — 9), (11)

where @Q;; is necessarily symmetric and positive
definite. Equations (10) and (11) lead to a proof
that the process described by the a;(f)’s is an n-
component stationary Gaussian-Markov process.
The Wi{a) and P,(e, | of) distributions may be
determined.® Using

Hm Pyle, | @f) = Wi(e)

t—x

for W,(a) we get the expression

Wile) = [J(J%f)—'l]“/ exp [—3e'Ma],  (12)

where ||[M|| is the determinant of the matrix M
which is defined by

2Q = GM™ + M™'Gf,

where G = KLE and G' is the transpose of the
matrix G. However, using (9) in the Boltzmann-
Planck relationship connecting entropy and prob-
ability gives for W,(«)
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1/2
W@ = (B exp (—1a').  (13)
(2m)
Equality of (12) and (13) requires
M ii = E.‘; (14)

which is the analog of (7) and which leads, through
the definition of M;, to the fluctuation-dissipation
theorem

FOF(s)) = [GE™ + ET'GN 8t — 5).  (15)

Onsager and Machlup further assumed that all
of the a.(f)’s were even functions of the time ¢. This
leads to the celebrated reciprocal relations

Li,' = L,‘; (16)
and reduces the fluctuation—dissipation theorem,
(15), to the elegant form

F@OF () = 2L 8t — s). a7

II. THE MOST GENERAL STATIONARY
GAUSSIAN-MARKOV PROCESSES

Although Onsager and Machlup treated the case
of «(t)’s which are all odd functions of the time,*
they did not treat the case in which both even and
odd «(t)’s oceur simultaneously. This situation arises
physically in the cases of the Brownian motion of a
harmonie oscillator, fluctuating hydrodynamics, and
the fluctuating Boltzmann equation. The first two
cases will be discussed in this paper within the con-
text of the most general stationary Gaussian—
Markov processes which do allow simultaneously
both even and odd random variables. In this section
the derivation of the most general stationary Gaus-
sian—-Markov processes will be presented and the
case of the Brownian motion of a harmonic oscillator
will be given as an example. In the next section
fluetuating hydrodynamics will be presented and
the fluctuating Boltzmann equation will be reserved
for a sequel to this paper.

For the general case the thermodynamical vari-
ables will be denoted by a,(t) - - - a,(f). Their equilib-
rium values are zero, and near equilibrium the
entropy is given by

S = 8 — 3Kpa,E,;a;, (18)

where the matrix E,; is symmetric and positive
definite. As pointed out in the introduction, for a
stationary Gaussian process W.(a) and P.(a | a’t)
are expressed in the form

Wi(a) = W, exp (—3a'Ea) (19)
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and
Py(a|a’,t) = P,exp (—3%a'Aa — a'Ba’ — 3a’'Ca’),

where E is the entropy matrix in (18), W; =
l|E|l/(27)", A and C are symmetric positive definite
matrices depending on ¢, and B is a ¢ dependent
matrix with no special symmetry properties. P, is a
normalization constant which will be determined
below. Because P, must satisfy the normalization
condition, (1), it must be of the form

Pya|a', ) = P, exp [—3(@ — Da)'C(a’ — Da)],
(20)

where P2 = |[C||/(2m)". The equality of (19) and
(20) determines A and B in terms of C and D by
A=DCD and B=—DIC. (21

The proof of (21) follows directly from the equality
of the arguments of the exponentials in (19) and
(20). Finally, from the condition

f W.(a)P,(a | a’, t) da = W.(a’)

it may be proved that

C'=E"'-DE'D. (22)

Therefore, P, is completely determined by the two
matrices E and D. The proof of (22) is given in
Appendix A.°

The form of P, in (20) implies that the conditional
average for a’ with given initial values for a is given
by

@h = fa’PQ(a | a’t) da’ = D(Ha, (23)

where the time dependence of D is made explicit.
At this point the Markov property of the process
is assumed and is introduced through the Smoluchov-

sky equation (2). Therefore, (23) implies

D()a = f f a'Py(a | a’'t — Py | a's) da’’ da’

= fPQ(a | a’’t — s)D(s)a’’ da’’ = D(s)D(¢ — s)a.

From this it follows that

D“'(t) = D;k(S)ij(t - s). (24)
The solution to (24) is the Doob formula
D(t) = exp (—GY), (25):

where G is a time independent matrix with. no
particular symmetry properties. Putting (25) into
(23) and taking the time derivative gives the regres-
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sion equations for the average behavior

4 (aly = ~Gutapy. (26)
This is the form of the average regression equations
for an arbitrary stationary Gaussian-Markov proc-
ess. In order to guarantee the approach to equilib-
rium G;; must have eigenvalues with positive real
parts. G;; may always be written as the sum of an
antisymmetric matrix, 4,;, and a symmetric matrix,
S;;. For the applications which will be made of this
result it is sufficient to assume that G,; is non-
singular and that the eigenvalues of S;; are non-
negative with at least one of them being positive.
Writing G = A 4+ S and introducing fluctuating
forces F, Eq. (26) may be considered as the average
of a generalized Langevin equation of the form

%a(t) + Aa() + Sa() = F@).  (27)
The fluctuating forces £() are assumed to be purely
random stationary Gaussian processes with average
value zero and with correlation formula

FOF) = 2Q 8(t — ),

where Q is symmetric and positive definite. The
proofs which lead to (12) and (15) may be used to
compute W,(a) and P,(a | a’t). The generalized
fluctuation—dissipation theorem becomes

F)F) = (GE™ + ET'GY) 8¢t — s).

(28)

(29)

Derivation of (29) requires use of (18) in analogy
with the use of (9) in the Onsager and Machlup
case. Recall that some of the a,(f)’s may be even
while others are odd functions of time. It is this
feature which makes (27) and (29) more general
than (10) and (15).

The Brownian motion of a harmonic oscillator
affords a simple example of all the points requiring
the generalized Langevin equation (27). The govern-
ing equations are

M=y,

dt 30)

dp 2 _ _a 7
dt-i—wa— Mp+F,

where M is the mass of the oscillator, « is the har-
monic force constant, and « is the friction constant.
F is a purely random stationary Gaussian process
with mean value zero and correlation formula

FOF(s)) = 2D 5@t — s). (31)
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Define y by y = Mwz. The identifications

_{y =0-—w)
) nnl

= ne ()
0 &
M)
permit writing (30) as
d

7%t Aga; + Sia; = F,. (32)
This is an example of (27) in which there are two
a’s with opposite time parity as indicated by (30).
Neither ¥ nor p alone generates a stationary Gaus-
sian-Markov process.” Note also that S;; has an
eigenvalue equal to zero whereas G;; = A;; + S,;; is
nevertheless non-singular.

Using the Maxwell-Boltzmann distribution for
W, gives

1 1
Wiy, p) = Wo exp (—5 M?(BT —3 M?(BT)

which leads to an E;; matrix with the value

, 1 (10}
Ei = wg,m (0 1)

Therefore, the fluctuation—dissipation theorem, (29),
becomes in this case,

<ﬁi(t)ﬁi(s)> = 2MK,TS;;6(t — s). (33)

Using the definition of S;; and (31) gives D = KpTa
which is once again the FEinstein relation, (7).

III. HYDRODYNAMICAL FLUCTUATIONS

Hydrodynamics is a macroscopic theory and one
should expect, therefore, that the hydrodynamical
variables will fluctuate in space and time. To
describe these fluctuations Landau and Lifshitz
have proposed adding a purely random stress
tensor and a purely random heat flux vector to the
Navier-Stokes equations.” They then tried to derive
the correlation properties of these random functions
from the Onsager-Machlup theory. Their derivation
is not correct because hydrodynamics simultaneously
involves even and odd functions of time. The proper
framework for a theory of hydrodynamical fluctua-
tions is the generalized theory of stationary
Gaussian-Markov processes presented in Sec. II
of this paper. It will be shown to lead in a natural
and consistent manner to a derivation of the
Landau-Lifshitz formulas.

One starts from the classical non-fluctuating
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Navier-Stokes equations which are

0 0
20t 5 (ou) = 0, (34)
D i)
P Djla = —EE;PQS, (35)
D 0
P ;€= “ap =T P osD s, (36)

where p is the mass density, u. is the local velocity,
and e is the interval energy per gram. D/Dt means
the substantial derivative 8/0¢ + wu,9/dr, and

_ 1{ou, auﬂ>
Daﬁ - 2(8:6,, + a.’l?a !

Paﬁ =P 5:1;8 - 27’(Da6 - %D'y'y 6&5) - E D‘Y'Y 605:

and ¢, = — KaT/dz, where p is the local pressure
and T is the local temperature. 7, ¢, and K are the
transport coefficients shear viscosity, bulk viscosity,
and heat conduectivity, respectively. Equations
(34), (35), and (36) must be completed by giving
the equation of state p = p(p, T) and the thermal
equation of state ¢ = e(p, T). These two state
equations are not independent and are related
through the second law of thermodynamics by

2 O¢ p

Writing the first and second laws together as

de = Tds + 2 dp

) (38)

and using
3
Paﬂ Daﬁ '__p'a_x_ua - 217 Daﬂ Duﬂ - (E - %‘77) D?Y’Y

in (36), and (8/0z.)u., = — (1/p)(D/Dt)p from
(34) gives for the entropy per gram, s, the equation

D _1< 8 )
PTpis = ge. B T
+ 29 Do Dos + ¢ — 30) DY, (39)

This leads, for the time rate of charge of the total
entropy, S(t) = [psdV, to the result

4o _ K([(8/3x,T1[(8/9z.)T]
dt § = f ( T*

1 2
+ 7 [20 Dag Dap + (€ — 30) DM) av. (40

The proof of (40) requires application of the diver-
gence theorem and elimination of surface integrals
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because there is neither momentum flow nor heat
flux across the bounding surface. The form of the
integrand in (40) guarantees that (d/dt)S = 0.

It will be shown that when linearized, Eqs. (34),
(35), and (36) may be put into the form of the
average regression equations for a general stationary
Gaussian—Markov process

d
di a; + Aya; =

—8;;a;. (41)
Denote the equilibrium density by p.,, the equilib-
rium temperature by T'.,, and take the equilibrium
velocity to be zero. The deviation of the density
from p., is denoted by Ap, the deviation of the
temperature from T, is denoted by AT, and the
velocity deviation is denoted by u,. Define constants
A, B, and C by: A = (9p/3p)ecs B = (00/0T)ea;
and ¢ = (3¢/0T).,. With these preliminaries the
linearized equations may be written in the form

9 9
dt Ap + Peq 01:“ Ua = Oy (42)
M d 9
p“at+Aa%A”+Ba%AT
9
= 5;‘; [27] Daﬂ + (E - %77) D‘Y‘Y 6aﬁ]1 (43)
9 9 9
pesC P AT + T. B 32, Ua = K 95, 9. AT. (44)

In the derivations of (43) and (44) from (35) and
(36) one uses (37) and (42). Define a,(rt) for ¢ =
1,2 - 75by

a(tl) = po”* Ap(ri), a.(t))

1/2
= (%1’3) u (rt) for a = 2,3, 4,

1/2
as(tl) = (%) AT(x?).

(45)
Greek indices, « and 8, will always go from 2 to 4
and will be used for vector and tensor components,
whereas Latin indices, 7 and j, are intended for
1, 2, 3, 4, and 5. With these conventions two 5 X 5
matrices are defined by

0 4,. ©
Aii(ryr,) = Aal Aa5 ’ (46)
0 A4,, O

where A,, = A, = AY*(98/9z,)8(r — r') and
Alia = Aa5 = (B/Peq)(Teq/C)lﬂ(a/axa)a(r - r,)
and
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0 o 0
SiuE,r)y=10 S, 0], (47)
0o 0 &8
where S.s = Spa = (1/peg) (8°/02,92)6(r — 1)

[17(5«”5;‘6 + 5a65uv) + (g - %n)%ﬁm] and S55 =
(K/peoC)(9°/02,02!)8(r — 1')5,,. Note that A,
(r, ') = —A;;(r, 1) and that S;;(r, ) = +
8;:(t’, r). Equations (42), (43), and (44) may now
be written as

;—ta,-(rt) + f A, t)a, @'t dr’

= —f S, r)a;{’t) dr’. (48)
By considering a.(rt) as labeled by both 7 and r,
the summation over the labels implied in (41)
corresponds to summing over ¢ and integrating
over r’, In this manner of thinking, (48) corresponds
to a specific instance of (41). The antisymmetry
of A;;(r, r') and the symmetry of S;;(r, t’) have
already been indicated. That the eigenvalues of
8;,(r, ') are non-negative may be verified from (47).

Tluctuating hydrodynamical forces, F,(rf), may
be added to (48) in order to get a fluctuating hydro-
dynamics. These forces have mean value zero and
correlation formula

F.x OF (') = 2Qu(x, ¥')8(t — ). (49)

The fluctuating linearized hydrodynamical equations
become

-(%ai(rt) + [ 446, a0 ar

= — f S, t)a;(c't) dr' + F.xt).  (50)
There remains the problems of determining @, ;(r,r’).
This is achieved by deducing an entropy matrix,
E.(r, '), from the entropy production equation,
(40), and substituting it into the fluctuation—dis-
sipation theorem.

From (40) the entropy production near equi-
librium may be written up to second order in the
hydrodynamical variables as

d K {d 3
als= f {Ti_ (690,, AT)(axa AT>

1 2
7 (21 Dag Deg + ¢ — 30) va]} av.  (51)

Substituting (45) and (47) into (51) gives

_|_
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A
%S = K» <m> ff a,(r)Si;(r, t')a;(t’t) dr dz;‘))

However, from the canonical second-order expression
for the entropy

S =28,— 3K; ff a.@D)E ;@ t)a;(t't) dr dr’  (53)
it follows from (48) that

d

L5 =k, [[[ atcnisue r)Bae,v)

+ E @, r')S;u, ) ]a’'t) dr dr’ dr'’.  (54)
Comparison of (52) and (54) gives for E,;(r, 1)

B, r) =

8:; 8(r — 1'). (55)

A
KBTeq
Defining @,;(x, ') by G, t') = A;;(r, T') +
S:;(r, 1), the fluctuation—dissipation theorem in
this context is given by

FaF,at)) = f (G, P NEGE”, 1)

+ B, v')NG@ ') dr’’ 8¢ — ¥). (56)

The integration in (56) is easily performed using
(55) and yields
K
Qii(r) l"’) = —%& Sii(r, I"). (57)
Sinece S,,(r, r') = 0, it follows from (49) and (57)
that F,(rf) = 0 which means that the continuity
equation, (42), has no fluctuating foree. This is
reasonable since it also does not possess a dissipative
constant.
The equations just derived may be rewritten

in terms of the usual hydrcldynamical variables,
Ap, u,, and AT. First, define S,z and §, by

] _ -1/2 _a_ o
I(a(rt) - (pqu) axﬂ baﬂ(rt)v

(58)
Fulet) = (puaTwACY™* 5= @),
This permits rewriting (50) as
9 9
Y Ap + peq oz, U, = 0, (59)
9 p _ 9
Pea gt T 5p = g, 21 Des
d
+ € — 30 Dyy b0l + o= Bepy (60)
8
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du &

or, =K 0%, 0%,

3 .
g(!

AT + az.

Jde

- 1
Peag; TP (61)
Putting (58) into (49) and using (57) gives as
fluctuation-dissipation theorems

(gaﬁ(rt)gnv(r,tl)>
= 2I<13Te424 3(1' - l'l) B(l - t,)[n(aanaﬂv

+ bas 55#) + (E - %"7) Oap 5‘“,],
(F@DFs't)) = 2K T2 8 — 1) 8(t — 1)K 8.p.
(63)

From (57) it is also seen that S, and §, are uncor-
related.

Equations (62) and (63) are indentical to the
corresponding formulas proposed by Landau and
Lifshitz. S.; may be thought of as a fluctuating
stress tensor, and §, may be viewed as a fluctuating
heat flux. These quantities must always be con-
sidered as fluctuating ‘‘forces’ which are responsible
for fluctuations in the hydrodynamical variables.

(62)

IV. APPLICATION TO THE THEORY
OF BROWNIAN MOTION

Applications of the fluctuating hydrodynamical
equations require solving equations (59), (60), and
(61) as inhomogeneous equations with inhomo-
geneities given by S, and §,. The linearity of the
equations results in giving Ap, AT, and w, as linear
functionals of S.s and §.. The correlations among
Ap, AT, and u, are induced through their functional
dependence upon S, and §,, using Egs. (62) and
(63). Note that for a particular problem the fluc-
tuating stress tensor, for example, is obtained by
solving for u, as a functional of S,z and §, and
then putting u, into the expression —29(D.s —
1D, ,8.8) — £D,,04s. This is very different from the
fluctuating stress tensor “force,” S,s, and the two
should not become confused.

The most simple and straightforward application
is the calculation of the fluctuating hydrodynamical
quantities around complete equilibrium where
p = peay T = Tey and u, = 0in an infinite medium.
This has been done by Rytov® and Foch,” and it
explains both the Rayleigh and Brillouin scattering
of light by a fluctuating fluid. In the following,
application will be made to the problem of a slowly
moving particle immersed in a fluid. This is the
problem of Brownian motion. It will be shown that
the fluctuating hydrodynamical equations give
rise to a fluctuating force acting on the particle,
as well as to an average frictional forece which
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slows the average motion of the particle. The
resulting situation will be seen to be that which
is described by the Langevin equation.’

For a slowly moving particle all inertial terms
in Egs. (59), (60), and (61) will be neglected.
Equation (59) becomes

9
ox,

U (rt) = 0. (64)

Equation (60) in conjunction with (64) becomes

9 d &
oz Poy(rt) = T Sas(rt), (65)
where
Postl) = —p(rt) 8as + ’7(61;;(:0 n G%Iirt))

P_; does not contain a bulk viscosity term because
of (64). Equation (61) in conjunction with (64)
is independent of u, altogether. Its solution is a
uniform temperature field on the average which
fluctuates as a result of the presence of the flue-
tuating heat flux “force” §,. Further consideration
of the temperature equation is omitted since it
does not effect u... Equations (64) and (65) determine
the problem when appropriate boundary conditions
are given.

The recipe for solving (64) and (65) is first of all

to solve the average equations

i)
9z,

u (rt) = 0,
(66)

J
axﬂ Paﬁ(rt) - 0

with appropriate boundary conditions on the
surface of the particle, S, and infinitely far away
from S. The boundary conditions are that u, = U,
on S and that u, = O infinitely far away from S.
This corresponds to the situation in which the
particle is moving slowly, with velocity U., through
the fluid which is otherwise at rest. The solution
to (66) with these boundary conditions gives the
average velocity field, u,, everywhere outside of
the particle. This is called the Stokes’ problem,
and for a sphere the solution is well known. Next,
the fluctuating equations, (64) and (65), must be
solved with appropriate boundary conditions on
S and infinitely far away from 8. In order to dis-
tinguish this case from the preceding case, the
fluctuating velocity field and the fluctuating stress
tensor are, respectively, denoted by @, and P,.
Equations (64) and (65) are then
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oz, U (rt) = (67)

5‘30—515L,,,(rt) = —5‘1—& 8.5t).

The appropriate boundary conditions are that on
S, 4, = 0 while infinitely far from S #, takes on
its eomplete equilibrium value. The solution to
(67) gives the fluctuating velocity field everywhere
outside of the particle. In general, both problems
given by (66) and (67) with their respective bound-
ary conditions may be solved by the method of
Green’s functions. For the average equations, (66),
this has been extensively discussed by Oseen.'
However, for the present purposes the explicit
solutions are not necessary.

From the average and fluctuating velocity fields,
U, and 4,, the average and fluctuating stress tensors
may be computed. From each of these, by inte-
grating the normal projections over the surface
of the particle, S, it is possible to obtain the average
and fluctuating foreces acting on the particle. Call

these two forces F, and F,, respectively. The
equation of motion for the particle is then
uLe_p, + 7. 68)

It is well known that the solution of the Stokes’
problem leads to a force F, which is proportional
to U, with a negative proportionality or friction
coefficient. If one ean prove that the fluctuating
force, F',,, satisfies a fluctuation—dissipation theorem
like (8) then the Langevin equation has been
completely derived from and shown to be consistent
with the fluetuating hydrodynamical equations.

For the proof, the following identity is required:

Jd 5 . 0
-/;r (ua 63:;; Paﬂ T U 6xg

= f (uapaﬂﬁ,g - ﬁaPa,gﬁg) dQ,
)

Pmﬂ) av

(69)

where the volume integral is over the entire region
V outside of the surface S. 14 is a unit vector normal
to S and directed into the fluid. For the proof of
(69) note that du,/dz, = 0 = 84,/0x, implies

3 . \p _<L )(au i%z)
(axﬁ“">P 6 = \ag, %) N\oz, T oz,

_ (2, ), (3ue %)=(_Q_~)

- (t‘)x,‘;u ) (E)x,s + 6(130, axﬁ Ya Paﬂ.
Therefore,
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)
axﬂP az,,P“") av

= d = . 0

ﬂPaﬁ + <axﬁua>Paﬂ — Uq 615
i)

_ (axﬂu ) aﬂ] dV

= Bxg (u Paﬂ

J, (o

0P ag) AV

= f (u,,P',,,g — ’ﬁaPaﬁ)ﬁp dﬂ
8

Equations (66) and (67) are substituted into
the left-hand side of (69), while the boundary
conditions for u, and 4, on S are substituted
into the right-hand side. The result is

Since U, 1s a constant, it may be factored out of

the integral over S. The fluctuating force, F,,
is by definition given by

Sa,ng - f UB.hsd0.  (70)

P = f Py dO. 1)
S
Therefore, putting (71) into (70) gives
_ f Ue = saﬁ av. (72)

From (72) and the basic correlation formula (62)
it may be proved that

U UyF()Fs()) = 2K ,Tq 8(t — 5) f weP sty AD.
(73)

The proof of (73) is in Appendix B
On S, u, = U,, so that

f woP oty 42 = U, f Poshs d2.
Ki S

The average frictional force on the particle is by
definition given by
fusl = [ Pugty g, (74)
S
where f.s is the friction tensor. Therefore, (73)
and (74) combine to give

(Foa(®)F5(5)) = 2K 5T ofusd(t — 9). (75)

This is the fluctuation—dissipation theorem for
the Langevin equation in a generalized form applic-
able to particles of arbitrary shape. Note that (75)
implies that f,s must be symmetric, a fact which
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may be proved directly. For a sphere of radius a,
fosg = 6mnad.s as is well known from the Stokes’
solution for a sphere.

V. CONCLUDING REMARKS

As mentioned in Sec. IV, the explicit solution
for the fluctuating velocity field is determined
uniquely by Eq. (67) and its boundary conditions.
For a sphere the solution can be found from the
Green’s tensor for the Stokes’ equation given by
Oseen. Hence, one can find the effect which the
motion of the sphere has on the correlation prop-
erties of #,, which will be different from the cor-
responding properties in an infinite fluid at rest.
Perhaps the effect of the motion of the sphere on
the Brillouin seattering of light is observable. It
would provide a very searching test for the fluc-
tuating hydrodynamical equations.

It seems reasonable to expect that the fluctuating
stress tensor Saﬂ and heat flux vector §, remain
the same even if the non-linear inertial effects
of the hydrodynamical equations can no longer
be neglected. It seems to us of special interest to
investigate the effect of the fluctuating forces near a
hydrodynamical instability point. It is possible that
in the neighborhood of such a point the fluctuations
and correlation lengths become large, so that the
effect on light scattering may be similar to the
so-called critical opalescence near the liquid-vapor
critical point. Whether the increase in Brillouin
scattering observed by Goldstein and Hagen in
fluids near the transition from laminar to turbulent
flow, which these authors attribute to a kind of
pre-turbulence, can be understood as an enhance-
ment of the hydrodynamical fluctuations remains
to be seen.'

APPENDIX A

The proof of (22) was suggested by deGroot.®
Using (19), the integration which must be performed
to obtain (22) is

WoP, f exp [—1a'(E + A)a
— a'Ba’ — %a’*Ca’] da.
The exponent may be written as
~ 3(a — Ka')'(E + A)(a — Ka')
+ }(Ka)(E + A)Ka’ — ja’'Ca,
where K is defined by
B=—(E+AK

1901

With the exponent in this form, the a integration
is easily done and produces a constant factor

[ Bast] ™

Therefore, the initial identity becomes

WP, [%ﬁu]_w exp [3(Ka")(E + A)Ka’

— $a’Ca’] = W, exp [—3a’'Ea’].
From this identity it follows that
E=C-K"E 4+ AKX
if
P, = [L@iﬁﬂ]”_
@2m)"

It is convenient to prove this last identity later
and for the time being to assume that it is true.
Using (21) the defining relation for K becomes

D'C = (E 4+ D'CD)K.
The expression E = C — K'(E + A)K becomes
E=C+4+K'B =C —K'DC.
Taking the transpose of this equation gives
E =C — CDK,
from which multiplication by D' gives
DC = D'E + D'CDK.
From the earlier expression for DIC it follows that
EK = D'E,
Finally, for K this gives the identity
K = ET'D'E.
From E = C — CDK this new expression for K gives
E =C — CDE'D'E.
Multiplying from the left with C™* and from the
right with E™* gives
C"' =E' — DE'D',

which is (22). Now, to prove P} = |[E + A||/(2r)"
recall that P; = |[C||/(27)" so that it is necessary
to show that

lICll = IIE + A|l.
From K = E7'D'E it follows that |K|| = |D|].
However, the defining identity for K using the
expression (21) for B gives |[D]] ||C|| = ||[E + A||

[IK|[ which with ||K|] = ||D|| gives the desired result.
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APPENDIX B. PROOF OF (73)
Directly from (62),
Ua Uﬂ<ﬁa(t)ﬁﬂ(s)> = 2KBTeq 5(t - 8)77

! __62_ ’
: f f H ") 5 3 — ©)
'(60,5 6“,, + 50,,, 65“ - %‘60,# 55,) dVrdV,-l = 2KBTeq

[ [oue dus | du dus 2(6%)2]
o — 9 j;; [81;5 Iz, T dxg 0xz  3\dz, dv.

Using du,/dx, = 0 implies

Therefore,
Ua Uﬂ<ﬁa(t)ﬁﬁ(s)>
1 9
= 2KBTeq B(t i S)'I] fV [5 axg 6.123 (uaua)
2 2

J
— U, ——-———‘axa 6xﬁ Uy + axa 61)6 (uau,g):l dV.

The divergence theorem may be applied. Surface
terms infinitely far from S vanish because of the
asymptotic behavior of u, at that distance. Applying
the divergence theorem and using (66) in the form

9 w = 2
T ozg 0xs © 0%,

p

gives
U UsFo(F(s)) = 2K 5T, 8(t — 8)n

L a0
{»/:S [%nﬁ axﬂ (utxua) + Ny ax‘g (uauﬂ)] dQ
9

1
B fvua;]‘axapdV}'

However,

9 R o,
14 —_ —_Ta
j; s o2, (Wou,) dQ = fsngua 2, dQ
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and
1 9 1
— Uy = dV = —=
fvu naxap 7.
] 17 .
.fvax (wp) dV = —-;‘/:snﬂp Busths AQ
and

.9
j;"a oz, (U aup) dQ

o
= Aot 2 dQ =
]:; B a.'L'/g

N 6u,3
fsnﬁul1 oz, daQ.

Consequently,

U UF()F5(s)) = 2K 5Toq (¢ — 8)7
g (B2 %) 1 ]
fs l:nﬁua (6903 + oz, Tiglh o 77p Sap | AQ
— 9K,T.. 5(t — 5) f weP st A2
S
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