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Geometric phase memories
Michael Berry

The moment of conception of the geometric phase can be pinpointed precisely, but related ideas had 
been formulated before, in various guises. Not less varied were the ramifications that became clear once 
the concept was identified formally.

A little more than 25 years ago, I 
introduced the geometric phase: 
when the parameters of a quantum 

mechanical wavefunction are slowly cycled 
around a circuit, then the phase of the 
wavefunction need not return to its original 
value1. In recalling the events surrounding 
the publication of that paper, I should 
back up to the early 1970s, to Ian Percival’s 
pioneering insight2 that classical chaos — 
then unfamiliar to physicists — must have 
implications in quantum mechanics, in 
particular for the spectrum of discrete 
energy levels of systems whose classical 
motion would be chaotic, such as atoms in 
strong magnetic fields or molecules whose 
atoms interact anharmonically.

My colleague Balazs Gyorffy suggested 
that such ‘irregular spectra’ might be 
described by random-matrix theory, which 
had been developed to understand the 
statistics of energy levels in nuclei3. A central 
feature of spectra of random matrices is that 
energy levels repel. For the universality class 
of systems with time-reversal symmetry 
(where spin is unimportant) level repulsion 
is described quantitatively by the probability 
distribution of spacings S between nearest-
neighbour levels: the probability of finding 
a given spacing vanishes linearly for near-
degeneracies, that is, as S goes to zero. 
Following insights from von Neumann 
and Wigner4, it soon became clear that 
linear repulsion could be understood as 
the shadow of true degeneracies (where 
S = 0) in nearby systems in which the 
system under consideration is imagined to 
be embedded. These degeneracies require 
two parameters — one is in general not 
sufficient to produce a degeneracy — and in 
terms of these parameters the energy levels 
are sheets in the form of a double cone. The 
double cone is also called a diabolo (after a 
spinning toy of the same shape), so I called 
the intersections ‘diabolical points’.

But how can we know that the two sheets 
really touch, rather than avoiding each 
other as energy levels typically do when just 
one parameter is varied? In 1978 I found 
the criterion: while encircling a diabolical 

point in the space of parameters, each of 
the two wavefunctions, when smoothly 
continued round its sheet, must change 
sign5. This simple topological result was very 
satisfying — a property of 2 × 2 matrices 
that should be in every textbook. But 
apparently it was in none. Alas, I quickly 
learned that my ‘discovery’ was not original: 
several years earlier, the mathematician 
Karen Uhlenbeck had written about the sign 
change6, and, nearly two decades before that, 
Christopher Longuet-Higgins7 and others 
had found it in a study of energy levels in 
molecules (the ‘others’ were physicists in 
Bristol, but more about this later).

I wanted to see these theoretical 
constructs — diabolical points, and the 
associated sign change — in computations 
for a concrete class of systems. 
Michael Wilkinson and I chose to explore 
the spectra of triangular quantum billiards: 
energy states of particles confined in a 
triangular domain with hard walls, equivalent 
to the vibration modes of a triangular drum. 
Triangles are indeed described by two 
parameters, namely any two angles. We found 
several diabolical points8 and confirmed their 
existence by calculating the sign change.

the moment of conception
In the spring of 1983, I talked about this 
work at the Georgia Institute of Technology, 
emphasizing the importance of time reversal. 
If this symmetry is broken, the spectra would 
fall into a different, more general universality 
class, in which degeneracies would typically 
require the explorations of three parameters, 
not two (ref. 4). So, if a weak magnetic field 
were added to the particle in the triangles, 
the diabolical points would disappear. At the 
end of the talk, Ronald Fox (at that time the 
chairman of the physics department) asked 
what happens to the sign change when the 
magnetic field is switched on.

This was the trigger, the moment of 
conception. My immediate response, “I 
suppose it’s a phase change different from π”, 
was followed by the premature “I’ll work 
it out tonight and tell you tomorrow”. In 
fact it took several weeks to understand the 

geometric phase properly. The outcome was 
an unexpected general feature of quantum 
mechanics: although wavefunctions are 
single-valued in the space of variables 
on which they depend, they need not be 
single-valued under continuation around a 
circuit of parameters that drive them. And 
when the driving is slow — ‘adiabatic’ — 
the mathematically natural continuation 
was exactly the one that is enforced by the 
time-dependent Schrödinger equation. 
After checking every book on quantum 
mechanics in our library, and failing to find 
the geometric phase effect described or even 
suggested, I decided to write up the work 
for publication.

John Hannay, who had made useful 
suggestions while the research was 
progressing, urged that my proposed title, 
which included the term ‘topological phase 
factors’, was misleading. In the general 
case, the phase depends continuously on 
the shape of the circuit in the space of 
parameters, so the phenomenon I had 
identified was geometric, not topological. 
Only in special cases — systems with time-
reversal symmetry, or the Aharonov–Bohm 
effect — is the phase topological.

anticipations and ramifications
After writing the paper1, but before 
submitting it for publication, I enjoyed a 
long drive through the English countryside 
with Eric Heller, during which I told him 
enthusiastically about the phase, and asked if 
he knew of anything similar. He did. Several 
years before, Alden Mead and Don Truhlar 
had identified ‘the molecular Aharonov–
Bohm effect’ in quantum chemistry9. Back 
in Bristol, I anxiously looked at their paper, 
and found to my dismay that they had 
indeed anticipated several features of the 
geometric phase. Fortunately I was able 
to cite their work in my paper, hoping it 
retained sufficient novelty and generality to 
survive the referees’ scrutiny.

I sent it to Proceedings of the Royal Society 
of London, my journal of choice for work I 
was particularly pleased with (at present, I 
am the editor). The paper was received on 
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13 June 1983. As the journal later informed 
me, one referee eventually confessed to 
having lost the manuscript, and it was only in 
1984 that it was finally published. Meanwhile, 
I had met Barry Simon in Australia, and 
told him about the phase. Overnight, 
he recognized it as a manifestation of 
anholonomy as known in fibre bundle theory: 
the failure of some quantities to return 
when others, that drive them, are cycled. His 
paper10, describing these connections with 
mathematics and also with earlier work on 
the quantum Hall effect11, was published in 
late 1983. After it appeared in Physical Review 
Letters, and he coined the term ‘Berry’s phase’, 
the concept, and my subsequent publication, 
became widely known.

Generalizations and extensions soon 
followed: from Wilczek and Zee12 to the 
non-Abelian case where a collection of 
degenerate states, rather than a single 
one, is cycled; from John Hannay13,14 to an 
analogous phase in classical mechanics; from 
Yakir Aharonov and Jeeva Anandan15 to a 
formulation that did not require adiabaticity; 
from John Garrison and Ewan Wright16 to 
non-Hermitian evolution.

A particularly far-reaching extension 
was Hiroshi Kuratsuji and Shini Iida’s 
interpretation17 of the driving parameters 
as dynamical variables, whose evolution 

was influenced by the same geometrical 
objects as the phase. It became clear18 that 
the reaction of the geometric phase on the 
parameters takes the form of an abstract 
magnetic field, which I explored with 
Jonathan Robbins19; we called it ‘geometric 
magnetism’. We now know that this is the 
first of a hierarchy of geometric reaction 
forces on a slow system coupled to a fast 
one. Very recently, I have returned to this 
subject, in a study, with Pragya Shukla, of 
the infinite series of reaction forces20; several 
features of the separation between fast and 
slow variables, however, remain mysterious. 

I soon learned about other anticipations 
of the phase than Mead and Truhlar’s. While 
visiting India in 1986, Rajaram Nityananda 
and Sivaraj Ramaseshan showed me the paper 
they had written21 reviving the discovery, 
by Shivaramakrishnam Pancharatnam22 
30 years before, of a geometric phase in 
beams of light whose polarization state 
is cycled (see Fig. 1). On the long flight 
home, I made the connection between 
Pancharatnam’s optical picture and my 
general quantum formalism23,24, and 
realized that he had formulated the phase 
for two-state systems. Pancharatnam was 
one of the several physicist nephews of 
Chandrasekhara Venkata Raman; in 1956, 
when he discovered his polarization phase, he 

was only 22 years old. Another early version 
was the discovery by Kenneth Budden 
and Martin Smith25 of ‘additional phase 
memory’ in radiowave propagation. These 
anticipations illustrate that in retrospect what 
we call ‘discovery’ sometimes looks more like 
emergence into the air from subterranean 
intellectual currents26. 

The phase emerged from my earlier interest 
in semiclassical physics, but influenced my 
subsequent intellectual trajectory in a very 
different way. The adiabatic formulation, 
in which the state is driven slowly, raised 
the question of corrections to the phase, of 
higher order in slowness. A calculation, in 
1987, of the infinite series of these higher 
orders, involved the recognition that the 
series must diverge if there are to be any non-
adiabatic transitions between the cycled state 
and other states27. As transitions between 
states represent the way in which quantum 
mechanics describes events (in contrast to 
eigenstates, which describe things), there 
is a sense in which the divergence of the 
series is necessary in order for anything to 
happen. This was the beginning of a series of 
developments28,29 continuing into the 1990s 
and building on earlier seminal insights by 
Robert Dingle30 (who had been my doctoral 
supervisor in the 1960s), in which increasingly 
sophisticated ways of summing divergent 
series were devised31,32, and the inevitability 
of divergence in series arising throughout 
theoretical physics33,34 became clear.

an unavoidable discovery?
It took several years to appreciate that 
although my understanding of the geometric 
phase involved a series of accidents — 
the quantum physics of classical chaos, 
Ronald Fox’s question, the drive with 
Eric Heller, and others — there was a certain 
inevitability about it emerging from the 
physics department of Bristol University. 
The reason is that physics associated with 
circuits was embedded in the culture of the 
department (see also ref. 35). Its inspiration 
was the deeply geometric personality of 
Charles Frank, who worked in Bristol 
from 1946 until his death in 1998. In 1951, 
he gave the definitive understanding36 of 
dislocations in solids in terms of a ‘Burgers 
circuit’ of a defect in the real crystal, whose 
image in a fictitious ideal crystal failed to 
close. In 1958 he applied similar ideas37 
to classify defects in liquid crystals. In the 
following year, Longuet-Higgins and a 
group including Maurice Pryce, then the 
head of the physics department in Bristol, 
understood the sign change associated with 
molecular electronic degeneracies7. At the 
same time, Yakir Aharonov and David Bohm 
discovered their celebrated eponymous 
effect38, interpretable as the phase change 

Figure 1 | A polarization bull’s-eye singularity photographed in the sky above Bristol University. Between 
the camera lens and the sky was a ‘black-light sandwich’, consisting of a sheet of overhead-projector 
transparency film (which happens to be biaxially anisotropic) sandwiched between two orthogonal 
polarizing filters49. The black stripe is a manifestation of the geometric phase.
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that a quantum electron acquires during 
a circuit of a line of magnetic flux; soon 
afterwards, Robert Chambers39 gave the 
first experimental demonstration. In 1974, 
John Nye and I identified phase singularities40 
(also termed wavefront dislocations, nodal 
lines or wave vortices) as ubiquitous features 
of waves, classical or quantum. And in the 
1980s, Nye gave a similar characterization 
of polarization singularities41,42, associated 
with singularities in vector waves. With this 
perspective, finding the geometric phase at 
Bristol appears unsurprising.

After 1983, my interests shifted. I did not 
follow the many applications of geometric 
phases in different areas of physics, and so 
cannot review them. But others have43–48. ❐
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